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Corrections to “Mathematical Models for Cochannel 
Interference  in  FH/MFSK  Multiple Access Systems” 

T.-Y. YAN AND C.  C. WANG 

In  the above paper,’ the  authors misrepresented the ap- 
proach  taken by  Geraniotis  and Pursley ([ 131 in the paper). 
Their  approach does not require an independence  assumption, 
and so the  statement, “Geraniotis  and Pursley also use the 
independence assumption to evaluate the  error probabilities 
for slow FH/MFSK over fading  channels,”  should be deleted 
from  our  introduction. 
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Collision Resolution Protocols Utilizing Absorptions and 
Collision Multiplicities 

MICHAEL GEORGIOPOULOS AND P. PAPANTONI-KAZAKOS 

Abstract-In this  correspondence, we consider the random accessing of 
a  single  slotted channel by a large number of packet transmitting users, 
whose  cumulative  traffic  is Poisson. We assume the existence  of the same 
feedback as that of the MCRAI protocols of Georgiadis, and full channel 
sensing, and we develop  collision  resolution  algorithms that utilize the 
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absorption  concept of Gallager. We observe the improvement in the 
throughputs induced by  the absorption,  as well as the improved delay 
characteristics. Finally, we  draw some  conclusions  about the limitations 
of the absorption  idea. 

I. INTRODUCTION 
We consider the accessing of a single, errorless, slotted 

channel by a Poisson packet  traffic. For this  channel  and 
user model, several transmission algorithms have been  pro- 
posed 11 ] -[ 31, where the existence of feedback information is 
always assumed. In this  paper, we assume the increased feedback 
information as in [ 6 ] ,  and  utilizing the  absorption  concept 
.of Gallager [4] ,  we design and  analyze  algorithms whose‘ 
performance is better  than  the  performance  induced by the 
algorithms in [ 61 . 

11. THE  ALGORITHMS WITH ABSORPTION-GENERAL 
OPERATION 

We assume the same  channel  and user model as in [ 61.  
The users sense the feedback continuously, and the feedback 
distinguishes packet collision multiplicities exactly  up  to  order 
K .  For  packet collision multiplicities of order greater than K ,  
the feedback informs  the users that  at least K f 1 packets 
have collided. 

The description of the algorithm is facilitated if we de- 
couple the arrival axis from  the channel axis. The arrival 
axis  contains points which correspond to  packet arrival in- 
stants, and it is segmented into consecutive, possibly over- 
lapping  intervals of length A(K) or less, where A ( K )  is a 
parameter  to be optimized later.  The channel axis i s  segmented 
into consecutive  nonoverlapping  intervals, whose lengths 
are  integral  multiples of a  slot  duration.  From now on, when 
we refer  to some time  ipstant t ,  it wiU correspond to time on 
the arrival axis. The channel axis represents real time, and every 
reference to some time  instant T will correspond to time on 
this axis. 

The algorithm operates  in sessions. Let us assume that when 
a session begins, at  some time T,  all packets generated  prior 
to t have been successfully transmitted.  The interval T - t 
is called the unexamined arrival interval at T,  while the interval 
[0, t )  is called the resolved arrival interval at T. At  the begin- 
ning of this session, an interval [ t ,  t + A) is initially  examined 
(A = min ( T  - t ,  A (K) )  (Fig. 1). During the  resolution process 
of ( t ,  t f A), the interval is possibly split into  a  number of 
smaller intervals, each one of which joins  a  queue, and awaits 
its  turn  to be examined  by the algorithm. We denote these 
intervals by [Ib(R), I e ( R ) ) ;  R 2 0. They lie on  the arrival 
axis with beginning and end points Ib(R) and Ie(R) ,  respec- 
tively. The  index R indicates their  position  in  the  queue, 
and it specifies the  order of their service by the channel. 
The interval which is currently served is the  one which occu- 
pies position 0 of the  queue [interval [Ib(0), I e ( 0 ) ) ] .  

At  the end of each slot,  the users are informed  about  the 
number of packets  transmitted over the  slot  through  the 
available feedback.  Let us denote by F T ,  T = 1, 2, .-, the 
value of the feedback information, which the users observe 
at  time T (end of slot [ T  - 1, T I ) .  We assume that FT takes 
the value i ,  0 < i < K ,  if i packets were transmitted over slot 
[ T  - 1, T I ,  while FT takes the value e ,  if .the  number of 
packets transmitted over the  slot [ T  - 1, TI exceeded the 
upper  detectable limit K of collision multiciplicities. 

Let us denote by N ( R ) ,  R 2 0, the actual number of packets 
contained in the interval [Zb(R), Ze(R)). We ais0 denote by 
&R), R > 0, an  estimate  from below of N ( R )  ( N ( R )  < N ( R ) ) ,  
which the users obtain based on  the available feedback infor- 
mation.  The description of the algorithm is facilitated  by the 
introduction of a  parameter P(R), R > 0, which is defined 
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Beginning of  S e s s i o n  

0' channel  AXIS b 

I n t e r v a l   R e s o l v e d   a t  T I n t e r v a l  unexamined a t  T 
Fig. 1. 

as follows: P(R), is equal  to o iff i i r ( ~ )  = N(R),  while P(R) 
is equal  to  1 iff N(R ) < N(R).  

At each time  instant during the  operation of the algorithm, 
and  for every interval [Zb(R), I&)) in the  queue,  the users 
know i) ip two'  endpoints I b ( R )  and I e ( R ) ,  ii) the value (if 
any) of N(R) ,  and iii) the value (if any) of P ( R ) .  The  actual 
number of packetsN(R),  contained in [ib(R), I e ( R ) ) ,  is known 
to  the users, iff P ( R )  = 0. 

We now  distinguish the follow$g cases. 
1) P(R) = 0 or equivalently N ( R )  = N(R).  Then, we say 

that [ I b ( R ) ,  I,@)) is in state S ( K ,  N(R))  or equivalently 
in  state S ( K ,  f i (R)) .  K ,  as before, is the  upper  detectable limit 
of collision multiplicities. 

2 )  P(R) = 1 or equivalently a($) < N(R).  Then, we say 
that [Ib(R), I e ( R ) )  is in state S ( K ,  N(R) ,  N(R)) .  K is  as in case 
1. 

During- its  operation,  the algorithm utihzes  the following 
parameters. 

a) The above  defined paraineters K ,  Ib(R), Ie(R),  FT,  f i (R) ,  
PW). 

b) A global counter CR, which is updated according to  the 
rules of the algorithm. CR is set to 1  at  the beginning of a 
new session and  when it first  takes the value 0, it signals 
the end of the session. 

c) For every value of K a  set of parameters ON ( 2  < iV< K )  
and a parameter A(K) ,  whose optimal values are shown  in 
Tables I and 11, respectively (for  further details about  the 
optimization  pfocedure, see [ 61 and [ 8 I ). 

d)  A  parameter M ,  whick, at   the beginning of steps 4 and 5 
is set  equal to  the value of N(0).  

e) A parameter I(O), which at  the beginning of steps 4 and 
5 is set  equal  to  the  length of the interval [ Ib(0) ,  Ze(0)). 

f )  A parameter T ,  whose  value corresponds to a real-time 
clock  reading. 

g) A parameter t ,  whose value at  the beginning of a new 
session (beginning of step  1)  corresponds to  the right end- 
point of the resolved arrival interval [0, tl . The algorithm 
begins from  step 0. 

0) T =  1 
t=O 
go to  step  1 

1) A = min ( T  - t ,  A ( K ) )  
Ib(0)  = t 
Ie(0)  = t + A 
t - t t f A  
C R =  1 
go to step 2 

TABLE I 
SPLITTING PARAMETER ON 

4 

0.249289 6 

0.288214 5 

0.342936 

I 

8 0.196794 I 
TABLE I1 

THROUGHPUTBOUNDS 

K x-AL(7K) 

1 1.266 

2 1.453 

3 1.600 

4 1.720 

5 1.807 
. .  

6 1.855 

i 1.876 

8 1.882 

hl (K) 

.48711  .48711 

.51426  .4926 ' 

.52461  .52461  .5159 

.52901  .52901 

.53077  .53077 

.53137 I .53137 I .53l l*** I 

.53154  .53154  .5315 

.53159  .53159 

** Massey's  algorithm  (ternary  feedback  with  skip  step) 
* Gallaier's  algorithm  (ternary  feedback  with  absorbtion:l 

*** NCRAI throughputs  with K energy  detectors.  See 161 
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2) All users with a packet in [ Ib(0) ,  Ie(0)) transmit in slot 
IT. T +  11 
- I  

T-+-T+ 1 
If FT = o or 1 set @(o) = FT, P(O) = 0; go to step 3 
If 2 < FT < K setT(0) = F T ,  P(0) = 0; go to stqp 4 

3) The interval [Ib(O), Ie (0) )  is either  in  state S ( K ,  0) 
I f F T = e  set N(0)  = K ,  P(0) = 1 ; go to st&  5 

or  in  state S ( K ,  1) 
C R + C R -  1 
If CR = 0 the session has ended; go to step 1 
If C R Z  0 

P(R, - 1) = P ( R )  
If$(O) = 0 and P(0) = 0 go to  step 3 
IfN(0)A=  1  andP(0) = 0 go to step 2 
If 1 <N(O) < K and P(0)  = 0 go to  step 4 
IfN(0)- 0 andP(0) = 1 go to  step 2 
If  1 G N(0)  < K and P(0)  = 1 go to  step 5 

Let M = N( 0 )  
LetI(0) = I e ( 0 )  - Ib (O)  
Ie(0) = Ib(0)  + oM*I(O); OM splitting parameter, O < 

4) The intern$ [Ib(0), Ie (0) )  is in state S ( K ,  $0)) 

Ib( 1) = Ib(0) + UM. I (O)  

Ie(1) ‘Ib(0) 
C R - t C R +  1 

All users with  a  packet in [Ib(O), Ze(0)) transmit in slot [ T ,  
T +  11 

y + T +  1 

P(1) = 0 
If FT  = o or 1 se t4(0)  = F T ,  P(O) = 0; go  to  step 3 
If 2 < FT < K set N(0)  = F T ,  P(0)  = 0; go to  step 4 

5) The inter@ [Ib(O), Ie (0) )  is in state S ( K ,  $o), N(0))  
Let M = N(0) 
Let Z(0) = &(O) - Ib(0)  

N ( l ) = M - F T  

Ie(0) = I b ( o )  f 2-’1(0)  
Ib (R  + 1) =Ib(R) 
Ie(R + 1) = Ie (R)  
f i (R + 1) = f i ( R )  
P(R + 1) = P ( R )  
Ib( 1)  = l b ( 0 )  + 2-’1(0) 

R = CR - 1, ..., 1 

re( 1) = Ib(0)  + I (0)  
C R - + C R +  1 

All users with  a  packet in [ I b ( o ) ,  I,(O)) transmit in slot [ T ,  
T +  11 

T’T+ 1 
If FT set @(O) = F,, P(0) = 0 ;  go to  step 5a 
IfM<F,GK set?(’(O) = F T ,  P(0) = 0; go to  step  5b 
, I fF ,  = e setN(0) = K ,  P(0) = 1 ; go to step  5b 

sa)$( 1 ) = M - &o> 

p‘fis If (0) = 7 0 or 1 and P( 0) = 0 go to  step 3 
If 2 N(0)  =G K and P(0)  = 0 to  to  step 4 

5b) [Ib(l), Ie(l)] is absorbed in  the  unexamined interval 
t -+ t - 2-11(0)  

C R - + C R  - 1 

TABLE III 
EXPECTED  DELAYS 

K-1 K=6 K-7 K-8 K-4 K-5 K-2  K=3 

.1 0 .283   0 .273   0 .264  

0 .728 0.728 0 . 7 2 8   0 . 7 3 2   0 . 7 3 4   0 . 7 3 9   0 . 7 4 7  .2 0.827 

0 .263 0 . 2 6 3  0 .263  0 .263  0 .263 

; 1 !i 13. :0  li.8: I i . 6 6 6   i i . 5 6 7   i i . 5 8 4   i . 5 2 4   I i . 5 2 4   1 . 4 9 8  1 
14 .304   8 .379  8.070 7.131  7 .108  7 .070  7 .035  6 .893 

26 .000  20 .749  19 .665  19 .523  18 .552  18 .517  18 .133 

31.695  31.439  31.326  30.761  30.523  30.202 

If $f < $0) G K and P(0)  = 0 go to step 4 
IfN(0) = K and P(0) = 1 go to step  5 

111. ANALYSIS -PERFORMANCE EVALUATION 
We analyzed the algorithms  presented  in the previous 

se’ction. We found  that  they are stable  in  the region [O, h ( K )  1 .  
We found  upper (h,(K)) and lower (h2(K)) bounds  for h(K).  
In Table I1  we list XI(K),  h,(K) for K ranging from 1 to 8. 
The  optimal, initially  examined arrival interval of a session, 
A(K) ,  is also given in the same table.  Actually x U ( K )  
is provided. We also include  in  Table I1 the  throughput of 
the MCRAI algorithm discussed in [6 ] .  For  further details, 
associated with the algorithm analysis and the evaluation of 
its performance, the  interested reader is referred to [S I .  

IV. CONCLUSIONS 
We simulated the algorithms  with absorptions  for dif- 

ferent K and A values. We used the simulations to  compute 
expected per-packet delays, where delay is defined as the 
time (in slot  units) between the arrival and the successful 
transmission of a  packet. We exhibit our results in Table 111. 
Comparing this table to [6, Table IV] , we observe that  the 
gain in delays via the algorithms  with absorptions becomes 
minimal, after K = 5. Now comparing the  throughput results 
(Table  II), we see that  the highest gain in throughput, by 
using algorithms with absorptions, is attained when K = 1 
(Gallager algorithm versus Massey algorithm) and K = 2 .  
From  then  on,  the gain decreases monotonically and it be- 
comes neghgible when K > 7. Therefore, as the available 
feedback  information increases, the advantages of the absorp- 
tion concept become negligible. By observing Table 11, we 
point  out  that algorithms with  absorptions can achieve almost 
the same performance  (throughput) with the algorithms without 
absorptions  with  one less energy detector. We point  out  that 
as the available feedback information increases, so does the 
sensitivity to channel  errors of the algorithms  with  absorp- 
tions. If channel  errors occur, then  a different class of algo- 
rithms may have to be devised. 
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I 

The Optimal  Retry  Distribution for Lightly  Loaded 
Slotted Aloha Systems 

B. SIMON AND L.,G. VOTTA 

Abstruct-Most of the  analytical work on slotted  Aloha  has been 
concerned  with  maximizing  the  utilization.  The  delay experienced  by a 
transmission  has  not  been a primary issue. In this  note we take  the 
opposite  point  of  view. It is  assumed  that  the  system is operating  far 
below  capacity (as is  typical  in  practice),  and we concern  ourselves  with 
the  problem of minimizing  packet  delay  in  the  event of a collision.  The 
retry distribution  that  minimizes  the average delay  is  derived. Surpris- 
ingly,  the  optimal retry distribution  has  finite  support, and in fact,  one 
never  waits  more  than three slots  before  retransmitting. 

I .  INTRODUCTION 
Slotted Aloha is among  the simplest and  oldest  multiple 

access protocols  for  communication systems, and is a viable 
access technique in certain  applications (e.g. ,  a system sup- 
porting a large number of light users). There are a few basic 
analytical  results for  slotted Aloha  systems, the  most  famous 
being the  theoretical maximum traffic  intensity of e- for  the 
standard  infinite  source model. The  common derivations of 
this  result  implicitly  assume that colliding packets  retransmit 
in  the  distant  future. As many  authors have pointed  out 
[2 ] ,   [ 3 ] ,  one can run  into  problems when colliding packets 
do  not wait forever to retransmit.  The  trouble  is  that  the 
slotted  Aloha  protocol is no longer stable, even for small 
traffic  intensities, unless it is very  carefully controlled. 

More recent  studies have shown  that  slotted Aloha  can 
be controlled in such a way that it remains stable [ 21, [ 51, 
and  that  it is possible. to obtain a utilization  in excess of e- 
[ 11, [6] ,  [ 71. In  most of these  models, though,  the delay 
experienced  by  a packet is not a  primary issue. In this note, 
we take  the  opposite  point of view. We assume that  the sys- 
tem is operating  far below capacity (as is typical  in practice), 
and concern ourselves with  the  problem of minimizing packet 
delay in  the event of a collision. 

In  the  next  section we will find the  optimal  retry distribu- 
tion  for an idealized slotted Aloha system.  Although  the 
system we optimize  for is idealized, it closely resembles a 
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sldtted Aloha  system that is lightly loaded.  In a  lightly loaded 
system, collisions involving more  than  two  packets arc: very 
rare. Our model assumes that  there is never a collision involv- 
ing more  than  two packets. 

11. MAIN RESULT 
Consider a slotted Aloha  system designed in  such , I  way 

that collisions involving more  than  two  packets never occur. 
When two  packets  do collide, they each independently c,hoose 
an integer m from a retry  distribution, { p n } ,  and wait nt slots 
before  retransmitting. If they  choose  the  same  integer,  they 
will recollide, and start  the process again. I t  is further assumed 
that new packets will not arrive while a collision is being 
resolved. Any slotted Aloha  system in  light  traffic will be- 
have approximately  in this manner.  Our goal is to find the 
retry  distribution  that minimizes the average delay  cxperi- 
enced  by colliding packets. 

Let p .  j = 1, 2, -, be a retry  distribution. Define A ( p )  
to be tLe expected delay  experienced by an unsuccessful 
transmission (i.e., the average number of slots  from  the  time 
the transmission is first attempted,  until  it is .successfully 
transmitted).  Then 

j = 1  k = j + l  
A ( P )  = ’  

j = .  1 

m 

j =  1 

Theorem: The  optimal  retry  distribution is 

Proof: We prove that P* is optimal by showing that 
it is a  Kuehn-Tucker point [4] in  the  set of probability 
distribution  on  the integers. The Kuehn-Tucker eq,uations 
are 

m 

c p i =  1. 
i= 1 

Taking derivatives, we have 

m 
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